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The softening of the GRB afterglow bears remarkable similarities to the frequency evolution
in a sonic boom. At the front end of the sonic boom cone, the frequency is infinite, much like
a Gamma Ray Burst (GRB). Inside the cone, the frequency rapidly decreases to infrasonic
ranges and the sound source appears at two places at the same time, mimicking the double-
lobed radio sources. Although a “luminal” boom violates the Lorentz invariance and is
therefore forbidden, it is tempting to work out the details and compare them with existing
data. This temptation is further enhanced by the observed superluminality in the celestial
objects associated with radio sources and some GRBs. In this article, we calculate the
temporal and spatial variation of observed frequencies from a hypothetical luminal boom
and show remarkable similarity between our calculations and current observations.
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1. Introduction

A sonic boom is created when an object emitting sound passes through the medium

faster than the speed of sound in that medium. As the object traverses the medium, the

sound it emits creates a conical wavefront, as shown in Fig. 1. The sound frequency at

this wavefront is infinite because of the Doppler shift. The frequency behind the conical

wavefront drops dramatically and soon reaches the infrasonic range. This frequency

evolution is remarkably similar to afterglow evolution of a gamma ray burst (GRB).

Gamma Ray Bursts are very brief, but intense flashes of γ rays in the sky, lasting

from a few milliseconds to several minutes,1 and are currently believed to emanate

from cataclysmic stellar collapses. The short flashes (the prompt emissions) are fol-

lowed by an afterglow of progressively softer energies. Thus, the initial γ rays are

promptly replaced by X-rays, light and even radio frequency waves. This softening of

the spectrum has been known for quite some time,2 and was first described using a
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Fig. 1. The frequency evolution of sound waves as a result of the Doppler effect in supersonic motion.
The supersonic object S is moving along the arrow. The sound waves are “inverted” due to the motion,
so that the waves emitted at two different points in the trajectory merge and reach the observer (at
O) at the same time. When the wavefront hits the observer, the frequency is infinity. After that, the
frequency rapidly decreases.

hypernova (fireball) model. In this model, a relativistically expanding fireball produces

the γ emission, and the spectrum softens as the fireball cools down.3 The model cal-

culates the energy released in the γ region as 1053–1054 ergs in a few seconds. This

energy output is similar to about 1000 times the total energy released by the sun over

its entire lifetime.

More recently, an inverse decay of the peak energy with varying time constant has

been used to empirically fit the observed time evolution of the peak energy4,5 using

a collapsar model. According to this model, GRBs are produced when the energy of

highly relativistic flows in stellar collapses are dissipated, with the resulting radiation

jets angled properly with respect to our line of sight. The collapsar model estimates

a lower energy output because the energy release is not isotropic, but concentrated

along the jets. However, the rate of the collapsar events has to be corrected for the

fraction of the solid angle within which the radiation jets can appear as GRBs. GRBs

are observed roughly at the rate of once a day. Thus, the expected rate of the cat-

aclysmic events powering the GRBs is of the order of 104–106 per day. Because of

this inverse relationship between the rate and the estimated energy output, the total

energy released per observed GRB remains the same.

If we think of a GRB as an effect similar to the sonic boom in supersonic motion,

the assumed cataclysmic energy requirement becomes superfluous. Another feature of

our perception of supersonic object is that we hear the sound source at two different

location as the same time, as illustrated in Fig. 2. This curious effect takes place because
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the sound waves emitted at two different points in the trajectory of the supersonic

object reach the observer at the same instant in time. The end result of this effect

is the perception of a symmetrically receding pair of sound sources, which, in the

luminal world, is a good description of symmetric radio sources (Double Radio source

Associated with Galactic Nucleus or DRAGN).

A

O

A' BB'

Fig. 2. The object is flying from A′ to A through B′ and B at a constant supersonic speed. Imagine
that the object emits sound during its travel. The sound emitted at the point B′ (which is near the
point of closest approach B) reaches the observer at O before the sound emitted earlier at A′. The
instant when the sound at an earlier point A′ reaches the observer, the sound emitted at a much later
point A also reaches O. So, the sound emitted at A and A′ reaches the observer at the same time,

giving the impression that the object is at these two points at the same time. In other words, the
observer hears two objects moving away from B′ rather than one real object.

Radio Sources are typically symmetric and seem associated with galactic cores, cur-

rently considered manifestations of space-time singularities or neutron stars. Different

classes of such objects associated with Active Galactic Nuclei (AGN) were found in

the last fifty years. Fig. 3 shows the radio galaxy Cygnus A,6 an example of such a

radio source and one of the brightest radio objects. Many of its features are common to

most extragalactic radio sources: the symmetric double lobes, an indication of a core,

an appearance of jets feeding the lobes and the hotspots. Refs. 7 and 8 have reported

more detailed kinematical features, such as the proper motion of the hotspots in the

lobes.

Symmetric radio sources (galactic or extragalactic) and GRBs may appear to be

completely distinct phenomena. However, their cores show a similar time evolution

in the peak energy, but with vastly different time constants. The spectra of GRBs

rapidly evolve from γ region to an optical or even RF afterglow, similar to the spectral

evolution of the hotspots of a radio source as they move from the core to the lobes.

Other similarities have begun to attract attention in the recent years.9

This article explores the similarities between a hypothetical “luminal” boom and

these two astrophysical phenomena, although such a luminal boom is forbidden by the
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Lorentz invariance. Treating GRB as a manifestation of a hypothetical luminal boom

results in a model that unifies these two phenomena and makes detailed predictions of

their kinematics.

2. Symmetric Radio Sources

Fig. 3. The radio jet and lobes in the hyperluminous radio galaxy Cygnus A. The hotspots in the
two lobes, the core region and the jets are clearly visible. (Reproduced from an image courtesy of
NRAO/AUI.)

Here, we show that our perception of a hypothetical object crossing our field of

vision at a constant superluminal speed is remarkably similar to a pair of symmetric

hotspots departing from a fixed point with a decelerating rate of angular separation.

Consider an object moving at a superluminal speed as shown in Fig. 4(a). The

point of closest approach is B. At that point, the object is at a distance of y from the

observer at O. Since the speed is superluminal, the light emitted by the object at some

point B′ (before the point of closest approach B) reaches the observer before the light

emitted at A′

−
. This reversal creates an illusion of the object moving in the direction

from B′ to A′

−
, while in reality it is moving in the opposite direction from A′

−
to B′.

This effect is better illustrated using an animation.a

We use the variable tO to denote the observer’s time. Note that, by definition, the

origin in the observer’s time axis is set when the object appears at B. ϕ is the observed

angle with respect to the point of closest approach B. ϕ is defined as θ − π/2 where θ

is the angle between the object’s velocity and the observer’s line of sight. ϕ is negative

for negative time t.

aThe perceptual effect of a superluminal object appearing as two objects is much eas-
ier to illustrate using an animation, which can be found at the author’s web site:
http://TheUnrealUniverse.com/anim.html.
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Fig. 4. The top panel (a) shows an object flying along A′

−
BA at a constant superluminal speed.

The observer is at O. The object crosses B (the point of closest approach to O) at time t = 0.
The bottom panel (b) shows how the object is perceived by the observer at O. It first appears at
B′, then splits into two. The two apparent objects seem to go away from each other (along J1 and
J2) as shown. This perceptual effect is best illustrated using an animation, which can be found at
http://TheUnrealUniverse.com/anim.shtml.

Appendix Appendix A.2 readily derives a relation between tO and ϕ.

tO = y

(

tan ϕ

β
+

1

cosϕ
− 1

)

(1)

Here, we have chosen units such that c = 1, so that y is also the time light takes to

traverse BO. The origin of the observer’s time is set when the observer sees the object

at B. i.e., tO = 0 when the light from the point of closest approach B reaches the

observer.

The actual plot of ϕ as a function of the observer’s time is given in Fig. 5 for

different speeds β. Note that for subluminal speeds, there is only one angular position

for any given tO. For subluminal objects, the observed angular position changes almost

linearly with the observed time, while for superluminal objects, the change is parabolic.

The time axis scales with y.
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Eq. (1) can be approximated using a Taylor series expansion as:

tO ≈ y

(

ϕ

β
+

ϕ2

2

)

(2)

From the quadratic Eq. (2), one can easily see that the minimum value of tO is tOmin =

−y/2β2 and it occurs at ϕ0 = −1/β. Thus, to the observer, the object first appears (as

though out of nowhere) at the position ϕ0 at time tOmin. Then it appears to stretch

and split, rapidly at first, and slowing down later.

The angular separation between the objects flying away from each other is:

Φ =
2

β

√

1 +
2β2

y
tO =

2

β
(1 + βϕ) (3)

And the rate at which the separation occurs is:

dΦ

dtO
=

√

2

ytage
=

2β

y (1 + βϕ)
(4)

where tage = tO − tOmin, the apparent age of the symmetric object. (The derivations

of these equations can be found in Appendix Appendix A.2.)
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Fig. 5. The apparent angular positions of an object traveling at different speeds at a distance y of
one million light years from us. The angular positions (ϕ in radians) are plotted against the observer’s
time tO in years.

This discussion shows that a single object moving across our field of vision at

superluminal speed creates an illusion of an object appearing at a certain point in

time, stretching and splitting into two and then moving away from each other. This

time evolution of the two objects is given in Eq. (1), and illustrated in the bottom

panel of Fig. 4(b). Note that the apparent time tO (as perceived by the observer) is

reversed with respect to the real time t in the region A− to B′. An event that happens
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near B′ appears to happen before an event near A−. Thus, the observer may see an

apparent violation of causality, but it is only a part of the light travel time effect.

If there are multiple objects, moving as a group, at roughly constant superluminal

speed along the same direction, they will appear as a series of objects materializing

at the same angular position and moving away from each other sequentially, one after

another. The apparent knot in one of the jets always has a corresponding knot in the

other jet. In fact, the appearance of a superluminal knot in one of the jets with no

counterpart in the opposite jet, or a clear movement in the angular position of the

“core” (at point B′) will invalidate our model.

3. Redshifts of the Hotspots

In the previous section, we showed how a hypothetical superluminal object appears as

two objects receding from a core. Now we consider the time evolution of the redshift of

the two apparent objects (or hotspots). Since the relativistic Doppler shift equation is

not appropriate for our considerations (because we are working with hypothetical su-

perluminal objects), we need to work out the relationship between the redshift (z) and

the speed (β) as we would do for sound. This calculation is done in Appendix Appendix

A.1:

1 + z = |1 − β cos θ|

= |1 + β sin ϕ|

=

∣

∣

∣

∣

∣

1 +
β2t

√

β2t2 + y2

∣

∣

∣

∣

∣

(5)

We can explain the radio frequency spectra of the hotspots as extremely redshifted

black body radiation because β can be enormous in our model of extragalactic radio

sources. Note that the limiting value of |1+z| is approximately equal to β, which gives

an indication of the speeds required to push the black body radiation of a typical star

to the RF region. Since the speeds (β) involved are typically extremely large, and we

can approximate the redshift as:

1 + z ≈ |βϕ| ≈
|βΦ|

2
(6)

Assuming the object to be a black body similar to the sun, we can predict the peak

wavelength (defined as the wavelength at which the luminosity is a maximum) of the

hotspots as:

λmax ≈ (1 + z)480nm ≈
|βΦ|

2
480nm (7)

where Φ is the angular separation between the two hotspots.

This equation shows that the peak RF wavelength increases linearly with the an-

gular separation. If multiple hotspots can be located in a twin jet system, their peak
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wavelengths will depend only on their angular separation, in a linear fashion. Such a

measurement of the emission frequency as ϕ increases along the jet is clearly seen in

the photometry of the jet in 3C 273.10 Furthermore, if the measurement is done at a

single wavelength, intensity variation can be expected as the hotspot moves along the

jet. In other words, measurements at higher wavelengths will find the peak intensities

farther away from the core region, which is again consistent with observations.

4. Gamma Ray Bursts

The evolution of redshift of the thermal spectrum of a hypothetical superluminal object

also holds the explanation for gamma ray bursts (GRBs).
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0.5
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2.5 Red Shift
1+z

Observer's time tO

Fig. 6. Time evolution of the redshift from a superluminal object. It shows the redshifts expected
from an object moving at β = 300 at a distance of ten million light years from us. The X axis is the
observer’s time in years. (Since the X axis scales with time, it is also the redshift from an object at
116 light days –ten million light seconds– with the X axis representing tO in seconds.)

The evolution of GRB can be made quantitative because we know the dependence

of the observer’s time tO and the redshift 1 + z on the real time t (Eqs. (1) and

(5)). From these two, we can deduce the observed time evolution of the redshift (see

Appendix Appendix A.3). We have plotted it parametrically in Fig. 6 that shows the

variation of redshift as a function of the observer’s time (tO). The figure shows that the

observed spectra of a superluminal object is expected to start at the observer’s time

tOmin with heavy (infinite) blue shift. The spectrum of the object rapidly softens and

soon evolves to zero redshift and on to higher values. The rate of softening depends on

the speed of the underlying superluminal object and its distance from us. The speed

and the distance are the only two parameters that are different between GRBs and

symmetric radio sources in our model.

Note that the X axis in Fig. 6 scales with time. We have plotted the variation of
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the redshift (1 + z) of an object with β = 300 and y = ten million light years, with X

axis is tO in years. It is also the variation of the redshift of an object at y = ten million

light seconds (or 116 light days) with X axis in seconds. The former corresponds to

symmetric jets and the latter to a GRB. Thus, for a GRB, the spectral evolution takes

place at a much faster pace. Different combinations of β and y can be fitted to describe

different GRB spectral evolutions.

The observer sees no object before tOmin. In other words, there is a definite point

in the observer’s time when the GRB is “born”, with no indication of its impending

birth before that time. This birth does not correspond to any cataclysmic event (as

would be required in the collapsar/hypernova or the “fireball” model) at the distant

object. It is nothing but an artifact of our perception.

In order to compare the time evolution of the GRB spectra to the ones reported in

the literature, we need to get an analytical expression for the redshift (z) as a function

of the observer’s time (tO). This can be done by eliminating t from the equations

for tO and 1 + z (Eqs. (1) and (5)), with some algebraic manipulations as shown

in Appendix Appendix A.3. The algebra can be made more manageable by defining

τ = y/β, a characteristic time scale for the GRB (or the radio source). This is the time

the object would take to reach us, if it were coming directly toward us. We also define

the age of the GRB (or radio source) as tage = tO− tOmin. This is simply the observer’s

time (tO) shifted by the time at which the object first appears to him (tOmin). With

these notations (and for small values t), it is possible to write the time dependence of

z as:

1 + z =

∣

∣

∣

∣

∣

1 +
β2

(

−τ ±
√

2βtage
)

βtage + τ/2 ∓
√

2βtage + β2τ

∣

∣

∣

∣

∣

(8)

for small values of t ≪ τ .

Since the peak energy of the spectrum is inversely proportional to the redshift, it

can be written as:

Epk(tage) =
Epk(tOmin)

1 + C1

√

tage
τ

+ C2
tage
τ

(9)

where C1 and C2 are coefficients to be estimated by the Taylor series expansion of

Eq. (8) or by fitting.

Ref. 11 have studied the evolution of the peak energy (Epk(t)), and modeled it

empirically as:

Epk(t) =
Epk,0

(1 + t/τ)δ
(10)

where t is the time elapsed after the onset (= tage in our notation), τ is a time constant

and δ is the hardness intensity correlation (HIC). Ref. 11 reported seven fitted values of

δ. We calculate their average as δ = 1.038 ± 0.014, with the individual values ranging
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from 0.4 to 1.1. Although it may not rule out or validate either model within the

statistics, the δ reported may fit better to Eq. (9). Furthermore, it is not an easy fit

because there are too many unknowns. However, the similarity between the shapes of

Eqs. (9) and (10) is remarkable, and points to the agreement between our model and

the existing data.

5. Conclusions

In this article, we looked at the spatio-temporal evolution of a supersonic object (both

in its position and the sound frequency we hear). We showed that it closely resembles

GRBs and DRAGNs if we were to extend the calculations to light, although a luminal

boom would necessitate superluminal motion and is therefore forbidden.

This difficulty notwithstanding, we presented a unified model for Gamma Ray

Bursts and jet like radio sources based on bulk superluminal motion. We showed that

a single superluminal object flying across our field of vision would appear to us as the

symmetric separation of two objects from a fixed core. Using this fact as the model

for symmetric jets and GRBs, we explained their kinematic features quantitatively. In

particular, we showed that the angle of separation of the hotspots was parabolic in

time, and the redshifts of the two hotspots were almost identical to each other. Even

the fact that the spectra of the hotspots are in the radio frequency region is explained

by assuming hyperluminal motion and the consequent redshift of the black body radia-

tion of a typical star. The time evolution of the black body radiation of a superluminal

object is completely consistent with the softening of the spectra observed in GRBs

and radio sources. In addition, our model explains why there is significant blue shift at

the core regions of radio sources, why radio sources seem to be associated with optical

galaxies and why GRBs appear at random points with no advance indication of their

impending appearance.

Although it does not address the energetics issues (the origin of superluminality),

our model presents an intriguing option based on how we would perceive hypothetical

superluminal motion. We presented a set of predictions and compared them to existing

data from DRAGNs and GRBs. The features such as the blueness of the core, symmetry

of the lobes, the transient γ and X-Ray bursts, the measured evolution of the spectra

along the jet all find natural and simple explanations in this model as perceptual

effects. Encouraged by this initial success, we may accept our model based on luminal

boom as a working model for these astrophysical phenomena.

It has to be emphasized that perceptual effects can masquerade as apparent viola-

tions of traditional physics. An example of such an effect is the apparent superluminal

motion,12,13,14 which was explained and anticipated within the context of the special

theory of relativity15 even before it was actually observed.16 Although the observation

of superluminal motion was the starting point behind the work presented in this article,

it is by no means an indication of the validity of our model. The similarity between a
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sonic boom and a hypothetical luminal boom in spatio-temporal and spectral evolution

is presented here as a curious, albeit probably unsound, foundation for our model.

One can, however, argue that the special theory of relativity (SR) does not deal

with superluminality and, therefore, superluminal motion and luminal booms are not

inconsistent with SR. As evidenced by the opening statements of Einsteins original

paper,15 the primary motivation for SR is a covariant formulation of Maxwells equa-

tions, which requires a coordinate transformation derived based partly on light travel

time (LTT) effects, and partly on the assumption that light travels at the same speed

with respect to all inertial frames. Despite this dependence on LTT, the LTT effects

are currently assumed to apply on a space-time that obeys SR. SR is a redefinition

of space and time (or, more generally, reality) in order to accommodate its two basic

postulates. It may be that there is a deeper structure to space-time, of which SR is

only our perception, filtered through the LTT effects. By treating them as an opti-

cal illusion to be applied on a space-time that obeys SR, we may be double counting

them. We may avoid the double counting by disentangling the covariance of Maxwells

equations from the coordinate transformations part of SR. Treating the LTT effects

separately (without attributing their consequences to the basic nature of space and

time), we can accommodate superluminality and obtain elegant explanations of the

astrophysical phenomena described in this article. Our unified explanation for GRBs

and symmetric radio sources, therefore, has implications as far reaching as our basic

understanding of the nature of space and time.

Appendix A. Mathematical Details

Appendix A.1. Doppler Shift

We refer to Fig. 7 and start by defining the real speed of the object as:

v = β c =
x′ − x

t′ − t
(A.1)

But the speed it appears to have will depend on when the observer senses the object

at A and A′. The apparent speed of the object is:

v′ = βO c =
x′ − x

tO
′ − tO

(A.2)

We also have

tO = t +
z

c

tO
′ = t′ +

z′

c

⇒ tO
′ − tO = t′ − t +

z′ − z

c
(A.3)
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Fig. 7. The object is flying along BAA′, the observer is at O. The object crosses B (the point of
closest approach) at time t = 0. It reaches A at time t. A photon emitted at A reaches O at time tO,
and a photon emitted at A′ reaches O at time tO

′.

Thus,

β

βO

=
tO

′ − tO
t′ − t

= 1 +
z′ − z

c(t′ − t)

= 1 −
x − x′

c(t′ − t)
cos θ

= 1 − β cos θ (A.4)

which gives,

βO =
β

1 − β cos θ

β =
βO

1 + βO cos θ
(A.5)

and,

βO

β
=

1

1 − β cos θ

= 1 + βO cos θ

=

√

1 + βO cos θ

1 − β cos θ
(A.6)

Redshift (z) defined as:

1 + z =
λO

λ
(A.7)
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where λO is the measured wavelength and λ is the known wavelength. In Fig. 7, the

number of wave cycles created in time t′ − t between A and A′ is the same as the

number of wave cycles sensed at O between tO
′ and tO. Substituting the values, we

get:

(t′ − t) c

λ
=

(tO
′ − tO) c

λO

(A.8)

Using the definitions of the real and apparent speeds from Eqs. (A.1) and (A.2), it is

easy to get:

λO

λ
=

β

βO

(A.9)

Using the relationship between the real speed β and the apparent speed βO from

Eq. (A.6), we get:

1 + z =
1

1 + βO cos θ

= 1 − β cos θ (A.10)

As expected, z depends on the longitudinal component of the velocity of the object.

Since we allow superluminal speeds in this calculation, we need to generalize this

equation for z noting that the ratio of wavelengths is positive. Taking this into account,

we get:

1 + z =

∣

∣

∣

∣

1

1 + βO cos θ

∣

∣

∣

∣

= |1 − β cos θ| (A.11)

For a receding object θ = π. If we consider only subluminal speeds, we can rewrite this

as:

1 + z =
1

1 − βO

= 1 + β

(1 + z)2 =
1 + β

1 − βO

Or,

1 + z =

√

1 + β

1 − βO

(A.12)

If we were to mistakenly assume that the speed we observe is the real speed, then this

becomes the relativistic Doppler formula:

1 + z =

√

1 + β

1 − β
(A.13)
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Appendix A.2. Kinematics of Superluminal Objects

t = 0

t

x
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O

x

A B

θ

y

θ

ϕ

β

−ϕ

B'- -

-

-

O

Fig. 8. An object flying along A−BA at a constant superluminal speed. The observer is at O. The
object crosses B (the point of closest approach to O) at time t = 0.

The derivation of the kinematics is based on Fig. 8. Here, an object is moving at a

superluminal speed along A−BA. At the point of closest approach, B, the object is a

distance of y from the observer at O. Since the speed is superluminal, the light emitted

by the object at some point B′ (before the point of closest approach B) reaches the

observer before the light emitted at A−. This gives an illusion of the object moving in

the direction from B′ to A−, while in reality it is moving from A− to B′.

Observed angle ϕ is measured with respect to the point of closest approach B and is

defined as θ−π/2 where θ is the angle between the object’s velocity and the observer’s

line of sight. ϕ is negative for negative time t. We choose units such that c = 1 for

simplicity and denote the observer’s time by tO. Note that, by definition, the origin in

the observer’s time, tO is set to the instant when the object appears at B.

The real position of the object at any time t is:

x = y tan ϕ = βt (A.14)

Or,

t =
y tanϕ

β
(A.15)

A photon emitted by the object at A (at time t) will reach O after traversing the

hypotenuse. A photon emitted at B will reach the observer at t = y, since we have

chosen c = 1. Since we define the observer’s time tO such that the time of arrival is

t = tO + y, then we have:

tO = t +
y

cosϕ
− y (A.16)
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which gives the relation between tO and ϕ.

tO = y

(

tan ϕ

β
+

1

cosϕ
− 1

)

(A.17)

Expanding the equation for tO to second order, we get:

tO = y

(

ϕ

β
+

ϕ2

2

)

(A.18)

The minimum value of tO occurs at ϕ0 = −1/β and it is tOmin = −y/2β2. To the

observer, the object first appears at the position ϕ = −1/β. Then it appears to stretch

and split, rapidly at first, and slowing down later.

The quadratic Eq. (A.18) can be recast as:

1 +
2β2

y
tO = (1 + βϕ)

2
(A.19)

which will be more useful later in the derivation.

The angular separation between the objects flying away from each other is the

difference between the roots of the quadratic Eq. (A.18):

Φ = ϕ1 − ϕ2

=
2

β

√

1 +
2β2

y
tO

=
2

β
(1 + βϕ) (A.20)

making use of Eq. (A.19). Thus, we have the angular separation either in terms of the

observer’s time (Φ(tO)) or the angular position of the object (Φ(ϕ)) as illustrated in

Figure 9.

The rate at which the angular separation occurs is:

dΦ

dtO
=

2β

y
√

1 + 2β2

y
tO

=
2β

y (1 + βϕ)
(A.21)

Again, making use of Eq. (A.19). Defining the apparent age of the radio source tage =
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t

ϕ

Φ(ϕ)

Φ(t )

ϕ

t

O

O

O

Fig. 9. Illustration of how the angular separation is expressed either in terms of the observer’s time

(Φ(tO)) or the angular position of the object (Φ(ϕ))

tO − tOmin and knowing tOmin = −y/2β2, we can write:

dΦ

dtO
=

2β

y
√

1 + 2β2

y
tO

=
2β

y
√

1 − tO
tOmin

=

√

4β2

y2
×

−tOmin

tO − tOmin

=

√

2

y tage
(A.22)

Appendix A.3. Time Evolution of the Redshift

As shown before in Eq. (A.11), the redshift z depends on the real speed β as:

1 + z = |1 − β cos θ| = |1 + β sinϕ| (A.23)

For any given time (tO) for the observer, there are two solutions for ϕ and z. ϕ1 and

ϕ2 lie on either side of ϕ0 = 1/β. For sinϕ > −1/β, we get

1 + z2 = 1 + β sin ϕ1 (A.24)

and for sinϕ < −1/β,

1 + z1 = −1 − β sin ϕ2 (A.25)
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Thus, we get the difference in the redshift between the two hotspots at ϕ1 and ϕ2 as:

∆z ≈ 2 + β(ϕ1 + ϕ2) (A.26)

We also have the mean of the solutions of the quadratic (ϕ1 and ϕ2) equal to the

position of the minimum (ϕ0):

ϕ1 + ϕ2

2
= −

1

β
(A.27)

Thus ϕ1+ϕ2 = −2/β and hence ∆z = 0. The two hotspots will have identical redshifts,

if terms of ϕ3 and above are ignored.

As shown before (see Eq. (A.23)), the redshift z depends on the real speed β as:

1 + z = |1 + β sinϕ| =

∣

∣

∣

∣

∣

1 +
β2t

√

β2t2 + y2

∣

∣

∣

∣

∣

(A.28)

Since we know z and tO functions of t, we can plot their inter-dependence parametri-

cally. This is shown in Fig. 6 of the article.

It is also possible to eliminate t and derive the dependence of 1+z on the apparent

age of the object under consideration, tage = tO − tmin. In order to do this, we first

define a time constant τ = y/β. This is the time the object would take to reach us, if

it were flying directly toward us. Keeping in mind that the new variable is related to

tage through tOmin = −y/2β2 = −τ/β, let’s get an expression for t/τ :

tO = t +
√

β2t2 + y2 − y

= t + βτ

√

1 +
t2

τ2
− βτ

≈ t +
βt2

2τ

⇒
t

τ
=

−1 ±
√

1 +
2βtage

τ

β
(A.29)

Note that this is valid only for t ≪ τ . Now we collect the terms in t/τ in the equation

for 1 + z:

tO = t +
√

β2t2 + y2 − y

⇒
√

β2t2 + y2 = tO − t + y

1 + z =

∣

∣

∣

∣

∣

1 +
β2t

√

β2t2 + y2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +
β2t

tO − t + y

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 +
β2 t

τ
tage
τ

− 1
2β

− t
τ

+ β

∣

∣

∣

∣

∣

(A.30)
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As expected, the time variables always appear as ratios like t/τ , giving confidence that

our choice of the characteristic time scale is probably right. Finally, we can substitute

t/τ from Eq. (A.29) in Eq. (A.30) to obtain:

1 + z =

∣

∣

∣

∣

∣

1 +
β2

(

−τ ±
√

2βtage
)

βtage + τ/2 ∓
√

2βtage + β2τ

∣

∣

∣

∣

∣

(A.31)
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